

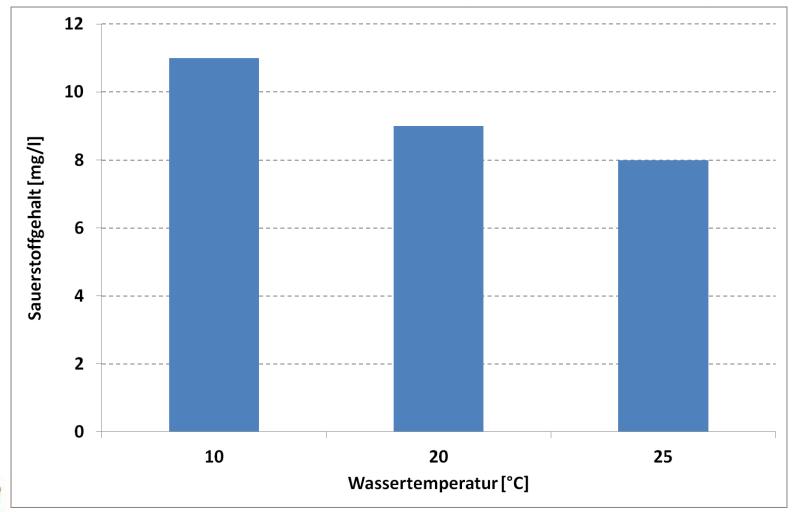
Zwei-Grad-Ziel für unsere Bäche – Wassertemperatur und Beschattung

Auftragnehmer HYDRON GmbH

WRRL-Beirat - 7. März 2023 Dr. Mechthild Banning - HLNUG

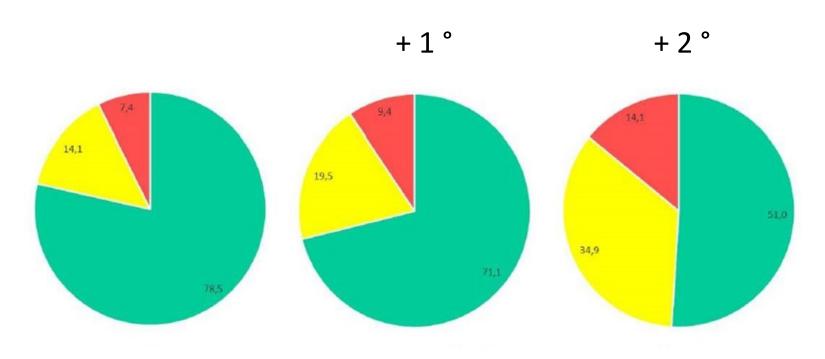
Gliederung

- 1. Bedeutung der Wassertemperatur
- 2. Projektziele HYDRON
- 3. Methodik
- 4. Ergebnisse
- 5. Beispiele aus Hessen
- 6. Schlussfolgerung
- 7. Hinweise



© HLNUG

1. Bedeutung der Wassertemperatur Wassertemperatur Sauerstoffgehalt (Sättigung 100 %)

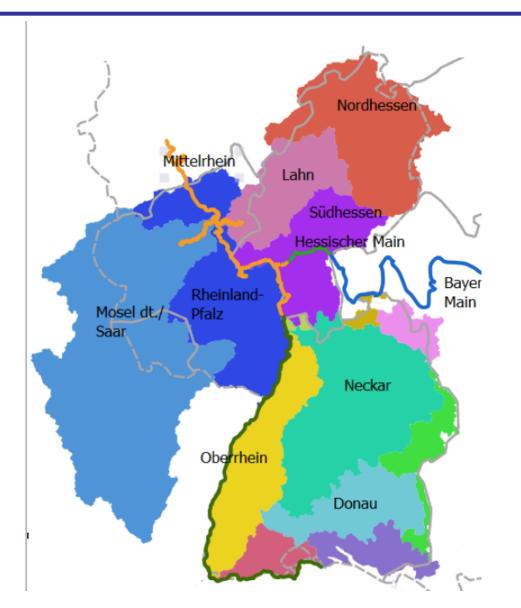


1. Bedeutung der Wassertemperatur Wassertemperatur (KI _{MZB}) ← Saprobie

© KLIWA 2016

Wassertemperatur ist (eine) zentrale Einflussgröße für die Gewässerökologie

2. Projektziele (2019 – 2022)



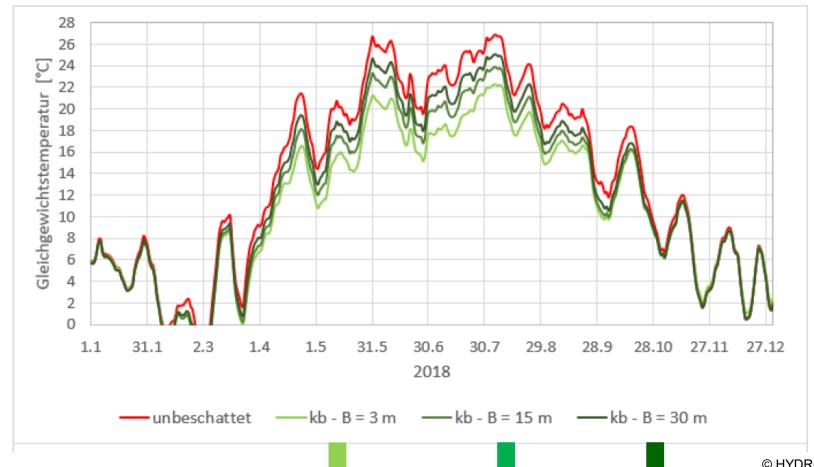
- ➤ Wie gut kann der Zunahme der Wassertemperatur in Fließgewässern durch Beschattung begegnet werden?
- Quantifizieren des (lokalen) Einflusses der Beschattung auf die Wassertemperatur
- Analyse des großräumigen Potentials der Beschattung als Anpassungsmaßnahme

3. Methodik: Nutzung der bereits bestehenden LARSIM-Wasserhaushalts- und Wassertemperaturmodelle

3. Methodik

- Modellierung der Wassertemperaturen mittels LARSIM Zeitraum: 2002 – 2010 (BW, RLP & HE) mit 2 Szenarien:
 - Zielszenario: 75 % Ufergehölze
 - Maximalszenario: 100 % Ufergehölze
- Berechnung des Istzustands der Beschattung anhand der Ergebnisse der Strukturkartierung (BW & RLP) bzw. des prozentualen Waldanteils (HE)

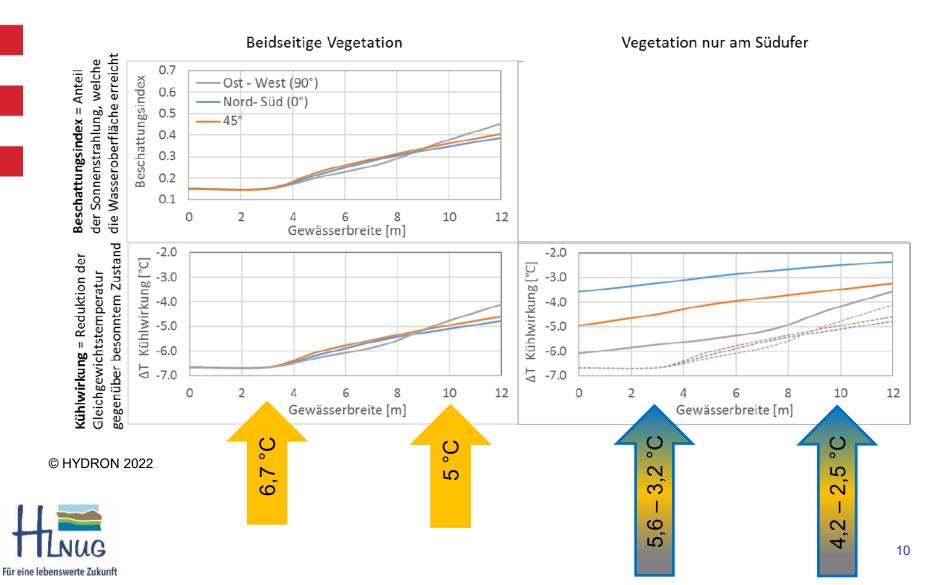
4. Wichtige Einzelergebnisse (BW, RLP & HE)


HESSEN	

Kennwert	Ist- Zustand	75 % Baumbestand ("Zielszenario")	100 % Baumbestand ("Maximalszenario")
Fschatt (Sonneneinstrahlung 1. August)	57 %	42 % (Δ 15 %)	26 % (Δ 31 %)
SumD _{so} (Anzahl der Tage mit Überschreitung des Sommer- Orientierungswertes)	3,2	1,4 (Δ 1,7)	0,5 (Δ 2,7)
SumD _{Wi} (Anzahl der Tage mit Überschreitung des Winter- Orientierungswertes)	2,4	2,3 (Δ 0,1)	2,2 (Δ 0,2)
WTmax [°C] (Tagesmittelwerte 2002 – 2010 der maximalen WT)	19,0	18,2 (Δ 0,8)	17,4 (Δ 1,6)

4. Ergebnisse

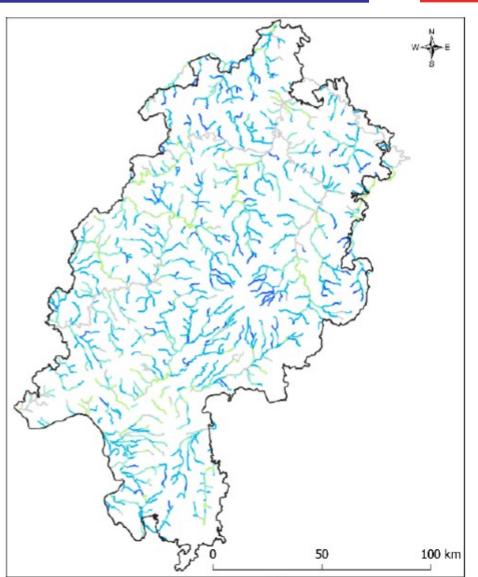
Kühlwirkung (bei 15 m hoher Ufervegetation) in Abhängigkeit von der Gewässerbreite



© HYDRON 2022

4. Ergebnisse

Maximale Kühlwirkung (bei 15 m hoher Ufervegetation) in Abhängigkeit von der Fließrichtung

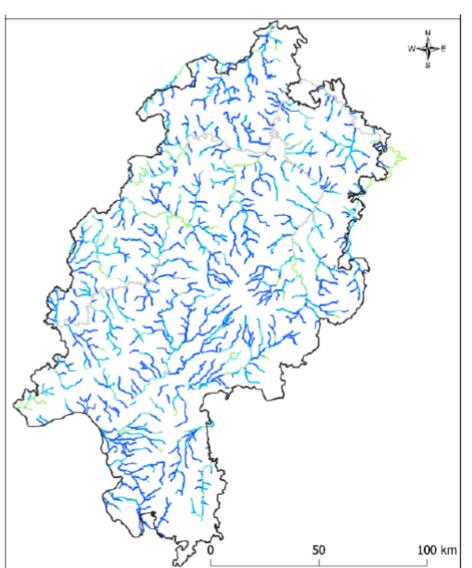


5. Beispiele aus Hessen: Potenzial Zielszenario (75 % Gehölze) -> Beschattungsgrad

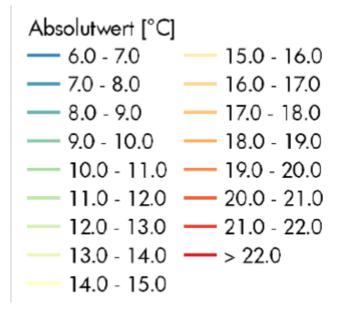
Potentiale []

- -0.60 -0.35
- -0.35 -0.20
- -0.20 -0.10
- -0.10 -0.02
- -0.02 0.00
- < 0,6 = mehr als 60 % zusätzliche Beschattung
- ⇒ an ca. 70 % der GTS würde sich der Beschattungsgrad um mehr als 10 % erhöhen

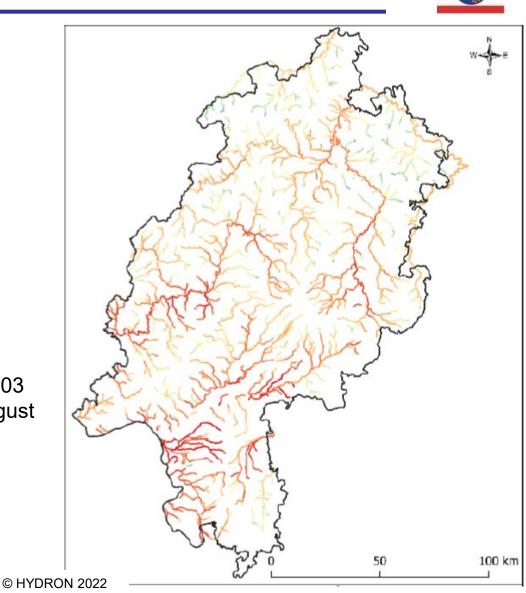
5. Beispiele aus Hessen:


Potenzial Maximalszenario (100 % Gehölze) -> Beschattungsgrad

Potentiale []


- -0.35 -0.20
- -0.20 -0.10
- -0.10 -0.02
- -0.02 0.00
- < 0,6 = mehr als 60 % zusätzliche Beschattung

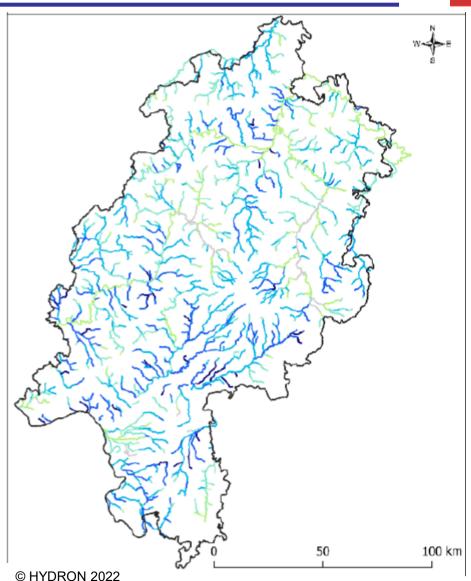
⇒ an ca. 45 % der GTS würde sich der Beschattungsgrad um 10 % bis 40 % erhöhen; an weiteren 40 % der GTS sogar um mehr als 40 %


5. Beispiele aus Hessen: Ist-Zustand: MW (WT_{JAS}) 2003

MW(WT_{JAS}) = Mittelwert der Wassertemperaturen 2003 in den Monaten Juli, August und September

Annahme: 2003 repräsentativ für den zukünftig zu erwartenden durchschnittlichen Zustand

5. Beispiele aus Hessen:


Potenzial Maximalszenario: MW (WT_{JAS}) 2003

Potentiale [°C]

- -3.0 -2.0
- -2.0 -1.2
- -1.2 -0.6
- -0.2 0.0

=> an mehr als 50 % der GTS würde sich die MW (WT_{JAS}) um mindestens 1,2° C reduzieren (an 20 % der GTS sogar um mehr als 2° C)

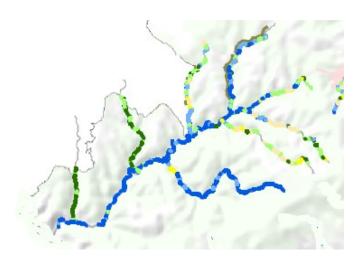
5. Beispiele aus Hessen:

Abschätzung Ist-Zustand: Uferbewuchs (STRUKA Hessen)

		Länge km	Ufergehölze
kleine/mittlere Gewässer	Symbolcode		Annahme %
Beidseitig nicht bodenständiger oder bodenständiger Wald oder Galerie	1	1877,7	100%
Einseitig nicht bodenständiger oder bodenständiger Wald oder Galerie	2	1589,6	50%
Beidseitig nicht bodenständige oder bodenständige Gebüsche, Einzelgehölze	3	1771,8	30%
Einseitig nicht bodenständige oder bodenständige Gebüsche, Einzelgehölze	4	555,4	15%
Beidseitig teilweise bodenständiger Wald oder Galerie	5	406	50%
Einseitig teilweise bodenständiger Wald oder Galerie	6	126	25%
keine der obigen Ausprägungen		991,4	0
kein Uferbewuchs, anthropogen bedingt (2) - in Karte nicht dargestellt		825,4	0
		8143,3	
			43,25%

Adobe Acrobat

Document


MP Hessen (S. 97):

"Es ist also bereits jetzt abzusehen, dass eine weitgehende Beschattung der Bäche und kleinen Flüsse in Hessen eine <u>sehr wirksame und</u> <u>kosteneffiziente Maßnahme ist, die auf deutlich</u> <u>mehr als 50 % der Fließstrecken</u> erfolgen soll."

5. Beispiele aus Hessen: Ist-Zustand: Beschattungsgrad <-> Uferbewuchs

Ergebnis der Strukturkartierung: Einzelparameter 5.1 Uferbewuchs

- Beidseitig nicht bodenständiger oder bodenständiger Wald oder Galerie
- —— Einseitig nicht bodenständiger oder bodenständiger Wald oder Galerie
- Beidseitig nicht bodenständige oder bodenständige Gebüsche, Einzelgehölze
- Einseitig nicht bodenständige oder bodenständige Gebüsche, Einzelgehölze
- Beidseitig teilweise bodenständiger Wald oder Galerie
- Einseitig teilweise bodenständiger Wald oder Galerie
- zusätzlich ein- oder beidseitig junge Gehölzpflanzungen
- keine Ufergehölze

6. Schlussfolgerungen

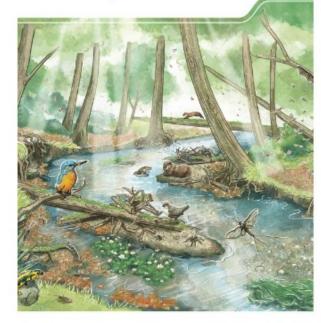
- Beschattung durch zusätzliche Ufervegetation ist eine effektive Anpassungsmaßnahme, um dem klimawandelbedingten Anstieg der sommerlichen Wassertemperaturen und den damit einhergehenden negativen ökologischen Folgen in unseren Bächen und kleinen Flüssen entgegenzuwirken.
- winterliche Wassertemperaturen werden durch zusätzliche Beschattung (durch Laubgehölze) in der Regel kaum beeinflusst
- beim Max.-Szenario (100 % Ufervegetation) werden die sommerlichen Wassertemperaturen in etwa doppelt so stark reduziert wie beim Ziel-Szenario (75 % Ufervegetation).
 => etwa die Hälfte des gesamten theoretischen Potentials liegt also in der Spannweite zwischen 75 % und 100 % Ufervegetation

7. Hinweis: vielfältige Funktion der Gehölze!!!

7 Hinweis: Neue Broschüren Beschattung (GfG) & Funktion Gewässerrandstreifen (Sachsen)

Beschattung an Fließgewässern

Funktionen, Auswirkungen und Bedeutung von Ufergehölzen an naturnahen Bächen und Flüssen



Ökologische Funktionen von Gewässerrandstreifen

Schriftenreihe, Heft 12/2022

